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Abstract– A standard double auction market collects bids from traders and matches them to find the most efficient
allocation, assuming that the value of unsold items remains unchanged. In the market for perishable goods, sellers suffer a
loss when they fail to sell their goods, because their salvage values are lost when the goods perish. To solve this problem,
we investigate the design of an online double auction for perishable goods, where bids arrive dynamically with their time
limits. Our market mechanism aims at improving the profitability of traders by reducing trade failures in the face of
uncertainty of incoming/departing bids.
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1 INTRODUCTION
In recent years, several types of auction mechanisms are

vigorously investigated to solve large-scale dynamic re-
source allocation problems in the societies such as cloud
computing 3) and electric power grids 11). In those prob-
lems, the resources to be allocated to demands have capac-
ity limitations, but they are seldom supposed to have tem-
poral limitations. In other words, the resources are durable
but not perishable. Perishability of the resources increases
complexity of the allocation problem because they must be
allocated to the demands before losing their value without
satisfying the demands.

The primary and tertiary industries produce perishable
goods or services, and make profits by allocating their
products to dynamic demands before they lose their value.
In services industries such as airlines and accommodation,
which provide perishable services to customers, several
revenue management techniques 10) have been studied.
Their objective is maximizing revenues of a single seller
since revenue management is typically practiced by the
seller for its own profit. Therefore, those techniques are
difficult to apply to the markets, where perishable prod-
ucts of multiple sellers should be coordinately allocated to
the demands for maximizing social utilities.

This paper discusses the problem of allocating per-
ishable goods such as fish and vegetables to fluctuating
demands in the market, where many sellers and buyers
dynamically participate in trading the commodities. In
wholesale markets for perishable goods, one-sided auc-
tions are widely used because the traditional markets are
spot markets that trade already-produced goods whose
costs are sunk. However, in the one-sided auctions, sell-
ers cannot straightforwardly influence price-making.

In order to solve the problem, we develop a prototyp-
ical marketplace for the perishable goods, in which sell-
ers can also trade their unproduced goods in forward mar-
kets. Our market adopts online double auction (DA) 4)

as a market mechanism to solve the problems by realiz-
ing fair price-making among traders while reducing allo-
cation failures 6). In the online DA, multiple buyers and
sellers arrive dynamically over time with their time limits.
Both buyers and sellers tender their bids for trading com-
modities. The bid expresses a trader’s offer for valuation,
quantity of the commodity to be traded. The arrival time,

time limit, and valuation for a trade are all private infor-
mation to a trader. Therefore, the online DA is uncertain
about forward trade. It collects bids over a specified time
interval, and clears the market on expiration of the bidding
interval using pre-determined rules.

In the online DA market for perishable commodities,
the market mechanism should decide matching among the
bids with different prices and time limits to increase total
utilities of traders and reduce trade failures in the face of
uncertainty about forward trades. The online market also
presents the tradeoff for clearing all possible matches as
they arise versus waiting for additional buy/sell bids be-
fore matching. Although waiting could engender better
matching, it can also hurt matching opportunities because
the time limit of some existing bids might expire.

Until recently, not much work had addressed online
double auction mechanisms 1, 2, 12). These studies examine
several important aspects of the problem: design of match-
ing algorithms with good worst-case performance within
the framework of competitive analysis 1), construction of
a general framework that facilitates truthful dynamic dou-
ble auctions by extending static double auction rules 2),
and development of computationally efficient matching al-
gorithms using weighted bipartite matching in graph the-
ory 12). Although their research results are theoretically
significant, we cannot directly apply their mechanisms to
our online DA problem because all of their models incor-
porate the assumption that trade failures never cause a loss
to traders, which is not true in our market for perishable
goods.

In this paper, we advocate a heuristic online DA mecha-
nism for the markets of perishable goods, which improves
revenue of the traders by reducing allocation failures in the
market. And as a preliminary step of developing the real
field application, we study multi-agent simulations of the
designed DA mechanism in an imaginary market.

The rest of the paper is organized as follows: Section 2
introduces our market model. Section 3 presents the mech-
anism design in our online DA market. Section 4 explains
the settings of multi-agent simulations and in Section 5 we
analyze the performance of various types of agents in the
markets and investigate the market equilibria. Section 6
concludes the paper and discusses future research direc-
tions.
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2 MARKET MODEL
In our model of a market, we consider discrete time

rounds, T = {1,2, · · ·}, indexed by t. For simplicity, we
assume the market is for a single commodity. Agents are
either sellers (S) or buyers (B), who arrive dynamically
over time and depart according to their time limit. In each
round, the agents trade multiple units of the commodity.
The market is cleared at the end of every round to find
new allocations.

Each agent i has private information, called type, θi =
(vi,qi,ai,di), where vi is agent i’s valuation of a single unit
of the good, qi is the quantity of the goods that agent i
wants to trade, ai is the arrival time, and di denotes the
departure time. The duration between the arrival time and
the departure time defines the agent’s trading period [ai,di]
indexed by p, and agents can repeatedly participate in the
auction over several trading periods.

We model our market as a wholesale market for B2B
transactions. In the market, seller i submit a bid 1 of her
goods at arrival time ai. At departure time di, the salvage
value of the goods evaporates because of its perishability
unless it is traded successfully. Seller i must bring her
goods to the market before her departure. Therefore, seller
i incurs production cost in her trading period and considers
the production cost as valuation vi of the goods. Because
of advance production and perishability, sellers face the
distinct risk of failing to recoup the production cost in the
trade.

Buyers procure the goods to resell them in retail mar-
kets. Arrival time a j is the first time when buyer j values
the item. For buyer j, valuation v j represents the expected
payment of her customers for the goods in a retail mar-
ket, which regulates her maximum budget to procure the
goods. In other words, buyer j tries to gain some profit
by retailing the goods if she succeeds to procure them be-
fore her departure time d j, which is a due time for a retail
opportunity.

Agents are self-interested and their types are private in-
formation. At the beginning of a trading period, agent
i submits a bid by making a claim about its type θ̂i =
(v̂i, q̂i, âi, d̂i) ̸= θi to the auctioneer. Furthermore, in suc-
ceeding rounds in the trading period, the agent can modify
the value of its unmatched bid 2. However, once agents
depart from the market, they are not allowed to reenter the
same bid.

2.1 Agent’s Utility
In our market model, an agent can place bids in the auc-

tion over several trading periods that may overlap with
each other. In order to simplify the notation hereafter, we
assume that the agent’s trading periods do not overlap and
each agent has a unique bid in any round t.

Let θ̂ t denote the set of all the agent’s types reported

1When we must distinguish between claims made by buyers and
claims made by sellers, we refer to the bid from a buyer and the ask
from a seller.

2When we must distinguish between claims made by buyers and
claims made by sellers, we refer to the bid from a buyer and the ask
from a seller.

in round t; θ̂ = (θ̂ 1, θ̂ 2, . . . , θ̂ t , . . .) denote a complete re-
ported type profile; and θ̂≤t denote the reported type pro-
file restricted to the agents with reported arrival no later
than round t. In each trading period p, agent i has a spe-
cific type θ p
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is a bid made by agent i in round t within trading period
p (i.e., t ∈ [ap

i ,d
p
i ]). The report represents a commitment

to trade at most qt
i units of goods at a limit price of v̂t

i in
round t within trading period p 3. We assume agent i re-
ports truthful values about quantity qi, arrival time ai, and
departure time di at any round t based on the reasons ex-
plained in Section 2.2.

In an online DA mechanism, M = (π,x) is composed
of an allocation policy π and a pricing policy x. Alloca-
tion policy π is defined as {π t}t∈T , where π t

i, j(θ̂≤t) ∈ I≥0
represents the quantity traded by agents i and j in round
t, given reports θ̂≤t . The pricing policy x is defined as
{xt}t∈T ,xt = (st ,bt), where st

i, j(θ̂≤t) ∈R≥0 represents the
payment seller i receives from an auctioneer as a result of
the trade with buyer j in round t, given reports θ̂≤t . Fur-
thermore, bt

i, j(θ̂≤t) ∈ R>0 represents a payment made by
buyer j to the auctioneer as a result of the trade with seller
i in round t, given reports θ̂≤t . In this paper, we assume
that seller i receives the entire amount paid by buyer j, so
that bt

i, j(θ̂≤t) = st
i, j(θ̂≤t).

Most studies on DA mechanisms assume agents with
simple quasi-linear utility, ∑ j(si, j −πi, jvi), for seller i and
∑i(πi, jv j−bi, j) for buyer j. However, in order to represent
characteristics of a wholesale market for perishable goods,
we define the idiosyncratic utility for sellers and buyers.

For seller i, when π t
i, j units of goods are sold to buyer j

at price st
i, j in round t within period p, then seller i obtains

incomes st
i, j. Since the production cost of the seller is vp

i ,
seller surplus is st

i, j −π t
i, jv

p
i . If a unit of goods perishes in

round t without being traded, seller i loses valuation vp
i .

Definition 1 (Seller i’s utility at time round t)
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(qp

i − ∑
t ′∈[ap

i ,d
p
i ]

∑
j∈B

πt ′
i, j(θ̂

≤t))vp
i . (1)

The second term in Equation (1) represents the loss
of unsold and perished goods, which are calculated dy-
namically at the bid’s departure time (i.e., when dP

i ≤ t).
With the effect of the second term, sellers are motivated
to lower their valuation in the bid when the departure time
approaches.

When bids are matched and buyer j receives π t
i, j units

of goods at price bt
i, j in round t within period p, buyer j

obtains surplus π t
i, jv

p
j − bt

i, j. As for failed bids, buyer j is
penalized by the auctioneer with a payment of a minimal
bid-ask gap.

3Successful trade in previous rounds of period p make the current
quantity of goods reduce to qt

i ≤ qp
i .
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Definition 2 (Buyer j’s utility at time round t)
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∑
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j )q
t ′
j ). (2)

The second term in Equation (2) represents the penalty of
unsuccessful tenders, which are partly caused by buyers’
greedy low biddings. With the effect of the second term,
buyers are motivated to raise their valuation in the bid.

Agents are modeled as risk-neutral and utility-
maximizing. Equation (1) shows that a seller gains profits
by selling low-value goods at high prices but loses money
if the goods perish without being sold. The seller’s bidding
strategy on valuation of the goods is intricate because she
can enhance her utility in the trade by either raising the
market price with higher valuation bidding or increasing
successful trades (i.e., preventing the goods from perish-
ing) with lower valuation bidding. Equation (2) reveals
that a buyer makes profits by procuring high-value goods
at lower prices and retailing the procured high-value goods
but loses money if she fails to procure goods. Therefore,
in this market, the buyer also has difficulty to find the op-
timal bidding strategies since she can improve her utility
by either bringing down the market price with lower val-
uation bidding or by increasing successful trades (i.e., en-
hancing retail opportunities and reducing penalties) with
higher valuation bidding.

2.2 Agent’s Truthfulness
An agent’s self-interest is exhibited in its willingness to

misrepresent its type when this will improve the outcome
of the auction in its favor. However, misrepresenting its
type is not always beneficial or feasible for the agent.

Reporting an earlier arrival time is infeasible for a seller
and a buyer because the arrival time is the earliest timing
that they decide to sell or buy the goods in the market. Re-
porting a later arrival time or an earlier departure time can
only reduce the chance of successful trade for the agents.
For a seller, it is impossible to report a later departure time
d̂i > di since the goods to be sold in the market perish by
the time di. For a buyer, misreporting a later departure
time d̂ j > d j may delay retailing the procured goods.

As for quantity, it is impossible for a seller to report
a larger quantity q̂i > qi because the sold goods must be
delivered immediately after trade in a market. Moreover,
it is unreasonable for a buyer to report a larger quantity
q̂ j > q j because excess orders may produce dead stocks
for her.

A seller can misreport a smaller quantity q̂i < qi with
the intention of raising the market price, but in that case,
she might need to throw out some of the goods she pro-
duced for sale. If a buyer misrepresents a smaller quantity
q̂ j < q j to lower the market price, she loses a chance of re-
tailing more goods. Although these misreports might cre-
ate larger profits for sellers and buyers, finding the optimal
quantity values for increasing their profits is not a straight-
forward task. Therefore, in this paper, we assume that the

agents do not like to misrepresent a quantity value in their
type.

On the other hand, we suppose that an agent has incen-
tives to misreport its valuation for increasing its profit be-
cause it is the most instinctive way for agents to influence
market prices. When sellers do not care about trade fail-
ures, sellers have an incentive to report a higher valuation
and buyers like to report a lower valuation. In a perish-
able goods market, a seller may also report a lower valu-
ation v̂i < vi when she desperately wants to sell the goods
before they perish. Consequently, we consider that agent
i can misrepresent only its valuation vi for improving its
utility among all the components of its type information
θi.

3 ONLINE DA MECHANISM
In perishable goods markets, sellers raise their asking

price and buyers lower their bidding price as a rational
strategy to improve their surplus as long as they can avoid
trade failures. In such markets, agents have to manip-
ulate their valuation carefully for obtaining higher utili-
ties. Our goal is to design a market mechanism that se-
cures desirable outcomes for both individual agents and
the whole market without the need for strategic bidding by
the agents.

The well-known result of 7) demonstrates that no Bayes-
Nash incentive-compatible exchange mechanism can be
simultaneously efficient, budget-balanced, and individu-
ally rational. Therefore, we aim to design an online
DA mechanism that imposes budget-balance, feasibility,
and individual rationality while promoting reasonable ef-
ficiency and moderate incentive-compatibility. Since an
auction mechanism consists of an allocation policy and a
pricing policy, we discuss our design for each policy in the
following sections.

3.1 Allocation Policy
Many studies on the DA mechanism investigate a static

market and use social surplus from successful trade as the
objective function, with the assumption that agents never
suffer a loss from trade failures. A common goal of the
allocation policy is to compute trades that maximize so-
cial surplus, which is the sum of the difference between
bid prices and ask prices for all matched bids. The ra-
tio of achieved social surplus against the maximal social
surplus at the competitive equilibrium is called allocative
efficiency.

The allocation policy that maximizes allocative effi-
ciency in a static DA market arranges the asks according
to the ascending order of the seller’s price and the bids ac-
cording to the descending order of the buyer’s price, and
matches the asks and bids in order 4. We refer to this allo-
cation rule as a standard allocation policy in the paper.

The standard allocation policy is efficient for the DA
markets that assume trade in forward markets or trade in
durable goods, in which agents do not lose their utility
even if they fail to trade. However, sellers of perishable

4FIFS rule is used to break a tie among bids or asks.
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goods can lose the value of perished goods when they fail
to sell the goods during the trading period. Consequently,
in addition to increasing social surplus from trade, increas-
ing the number of successful trades is also important in the
perishable goods markets for maximizing social utility.

In a static market, all the bids and asks to be matched
should exist in the market simultaneously, and hence, com-
binatorial optimization methods can find the allocation
that maximizes the social utility. However, in online DA
markets, the number of bids in the market changes dynam-
ically and cannot be predicted in advance. Therefore, if ev-
ery bid is matched immediately when a matchable counter
bid arrives in the market, the number of bids remaining in
the market might always be insufficient for finding more
desirable allocations that can produce larger utility. Be-
cause incoming bids have a possibility of producing a bet-
ter matching result with existing bids in the market, qual-
ity of the allocation can be improved if we accumulate the
bids without matching them immediately and decide the
allocation from the aggregated bids. At the same time, de-
ferring allocation decisions might prevent the existing bids
from being matched, and hence, increase trade failures.

In this paper, we advocate a deferred allocation pol-
icy and investigate its effectiveness in the online DA mar-
ket. In the deferred allocation policy, matching between a
seller’s ask and a buyer’s bid is deferred when any of the
following conditions is satisfied:

(Deferring Condition 1) The matching ask is for selling
already-produced goods and both matching ask and
bid have slack time before their departure times.

(Deferring Condition 2) The matching ask has slack
time before its departure time and there are other asks
waiting to be allocated, which can be matched only
with the matching bid.

The first condition expresses that matching of the ask
should be postponed when the seller’s goods are already
produced and their cost are sunk. And the second condi-
tion suggests that matching of a seller’s ask with a limited
matching candidate should be prioritized over other asks.

3.2 Pricing policy
The pricing policy is important to secure truthful-

ness and prevent strategic manipulation by agents, which
should promote stability of agent bidding and increase ef-
ficiency of a market. Nevertheless, obtaining truthfulness
in DA markets while guaranteeing other desirable proper-
ties is impossible. In our market, we impose both budget-
balance and individual rationality, and also promote rea-
sonable efficiency. Hence we adopt k-double auction 8),
in which clearing price is determined as (1−k)v̂t

j +kv̂t
i , as

our pricing policy, and set the value of k as 0.0 because of
the following reasons.

1. Seller i does not have an incentive to overstate her
true valuation vp

i , because it does not change the
clearing price without losing matching opportunities.
She does not have a strong incentive to understate her

valuation either, if our allocation policy can reduce
the risk of loss caused by perished goods.

2. The bid-ask gaps are usually small in competitive
B2B transactions. In such cases, buyer j may make
bigger profits in retail markets than her surplus in
wholesale markets. Therefore she has an incentive to
increase the possible number of matching π t

i, j (i.e.,
enhancing retailing opportunities) in the wholesale
markets by reporting high valuation under a budget
constraint.

Additionally, To encourage buyers’ high valuation, the
auctioneer imposes a penalty on buyers when they fail to
trade in the auction. When buyer j cannot obtain qt

j units
of goods at at a limit price of v̂t

j in time round t, in which
sellers’ lowest ask is v̂t

i , the buyer is charged (v̂t
i − v̂t

j)q
t
j by

the auctioneer.

4 MULTI-AGENT SIMULATION
With the above defined allocation policy and pricing

policy, we speculate that our mechanism can make the
online DA market for perishable goods yield a high util-
ity with moderate incentive-compatibility while maintain-
ing properties of budget-balance and individual rational-
ity. Since our market model and mechanism are much
more complex than traditional continuous double auctions,
even for which theoretical analysis is intractable, we per-
form empirical evaluation of the market mechanism using
multi-agent simulation.

Fig. 1: Screenshot of multi-agent market simulator

For the purpose, we developed a web-based market sim-
ulator using Java, PHP, JavaScript, and MySQL. In the
simulator, any number of human subjects as well as soft-
ware agents can participate in the market either as buy-
ers or as sellers from the remote computer. The graphi-
cal displays of the simulator shown in Fig. 1 can present
several types of data to a user such as the bidding history
of a trader and several market statistics such as transition
of bidding prices, clearing prices, demand quantities, and
supply quantities along the timeline. These data can be
used to support making bidding decisions online and ana-
lyze trading performances offline.

4.1 Simulation Settings
We evaluate the market mechanism by running simula-

tions with specific settings. In the simulation, five sell-
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ers and five buyers participate in the market. For the
simulations, we use two types of markets with distinctive
demand-supply curves depicted in Fig. 2 and Fig. 3.
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Fig. 2: Market with high risk of trade failures
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Fig. 3: Market with low risk of trade failures

Figure 2 represents the market with a high risk of trade
failures, in which the average valuation of goods by the
buyers is much lower than that by the sellers. Figure 3
represents the market with a low risk of trade failures,
in which the average valuation of goods by the buyers is
much higher than that by the sellers.

Each simulation runs for 44 days and the market is
cleared every hour. Every day the agents submit one bid
or ask, each of which has one unit of demand or supply for
the homogeneous perishable goods.

Arrival time of the agents is randomly decided for every
bid submission. In the time interval of arrival and depar-
ture, agents can freely modify their reported valuation in
the bid.

The seller’s ask departs the market 48 hours after its ar-
rival, assuming that a seller’s goods are produced 24 hours
after bidding and lose their value after 24 hours from their
production. This means that both forward and spot trades
occur in the market simultaneously.

The departure time of a buyer’s bid is 24 hours after its
arrival, which simulates the situation of buyers procuring
goods for retail sales of the next day.

For each result shown in the following sections, 100 ran-
domized trials are executed to simulate diversified patterns
of agents’ arrival and departure.

4.2 Agent’s Bidding Strategies
Experimental analyses of complex markets necessarily

focus on a restricted set of bidding strategies. In this paper,
we prepare several types of bidding strategies for both sell-
ers and buyers to simulate the behavior of different agents
in reporting their valuation, and investigate agent behavior

in different market situations. For this purpose, we model
the strategies of agents based on typical behaviors of hu-
man traders in the market for perishable goods.

Seller agent i reports her valuation in the bids based on
her true valuation vp

i . And buyer agent j reports the val-
uation based on her budget, which is determined by de-
ducting prospective retail profits from her expected cus-
tomers’ valuation vp

j . We model buyer j’s budget as γ p
j vp

j ,
assuming that it is proportional to the expected customers’
valuation vp

j . In this paper we set 0.5 as the value of γ p
j .

We model agent’s strategies based on typical behaviors
of human traders in the perishable goods market as fol-
lows:

1. Modest strategy (MOD) : only for sellers

Seller i always reports her valuation as

v̂t
i = 0. (3)

This strategy is developed to simulate one-sided auc-
tion markets where only buyers submit their bids.

2. Truth-telling strategy (TT)

With this strategy, an agent always reports its valua-
tion truthfully.

(a) Seller i’s reported valuation at time round t is

v̂t
i = vp

i . (4)

(b) Buyer j’s reported valuation at time round t is

v̂t
j = γ p

j vp
j . (5)

3. Truth-Telling to Modest strategy (TTMOD) : only for
sellers

When t is before production time of seller i’s goods
(i.e., forward trade),

v̂t
i = vp

i . (6)

When t is after production time of seller i’s goods
(i.e., spot trade),

v̂t
i = 0. (7)

This strategy is simple but reasonable for sellers,
since production cost of the goods become sunk af-
ter their production and value of the perishable goods
evaporates eventually.

4. Monotonous strategy (MONO)

An agent monotonously tunes its report on valuation
along with the elapsed time after the arrival of the bid
in the market.

In trading period p, seller i and buyer j report their
valuation as follows:

(a) Seller i’s reported valuation at time round t is

v̂t
i = vp

i (1.0+δ )
dp

i − t
dp

i −ap
i
. (8)
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(b) Buyer j’s reported valuation at time round t is

v̂t
j = γ p

j vp
j (1.0−δ

dp
j − t

dp
j −ap

j
). (9)

where δ is a parameter to control aggressiveness of
the agent’s bidding behavior. With a larger value of
δ , the agent tends to report greedier valuation. In this
paper, we set 0.2 as the value of δ , assuming that
the trade surplus equivalent to 20% of its valuation
is a reasonable target for the aggressive agent. This
strategy simulates a very intuitive behavior of traders,
and it is widely used in revenue management as a dy-
namic pricing rule.

5. Zero-intelligent aggressive strategy (ZIA)

By reporting the valuation randomly within a certain
range, an agent tries to obtain a larger surplus when
there is little risk of trade failures and gives up mak-
ing a profit when there is little time left until its de-
parture.

In trading period p, seller i and buyer j report their
valuation as follows:

(a) Seller i’s reported valuation at time round t is

v̂t
i = vp

i rand((1.0+δ )
dp

i − t
dp

i −ap
i
,1.0+δ ). (10)

(b) Buyer j’s reported valuation at time round t is

v̂t
j = γ p

j vp
j rand(1.0−δ ,1.0−δ

dp
j − t

dp
j −ap

j
). (11)

In the above equations, rand(x,y) is a function to pro-
duce a random value in between x and y. Thus, ZIA
strategy is a randomized variation of MONO strategy.

5 EXPERIMENTAL ANALYSIS
Understanding the interaction among agents with var-

ious bidding strategies is important in market design to
ensure favorable market properties such as efficiency and
stability. The Nash equilibrium is an appropriate solution
concept for understanding and characterizing the strategic
behavior of self-interested agents. However, computing
the exact Nash equilibria is intractable for a dynamic mar-
ket with non-deterministic aspects such as our online DA
market. Therefore, we evaluate the market design by com-
puting the Nash equilibria across the restricted strategy
space through simulations.

Sellers and buyers in the B2B market for perishable
goods have unique utilities (as explained in Section 2.1)
and adopt distinctive bidding strategies (as shown in Sec-
tion 4.2) for maximizing their utility. In the experiments,
we perform a limited strategic analysis by looking for
Nash equilibria between restricted types of sellers and
buyers based on the simplified market model in which
all the agents are homogeneous and follow the same pure
strategy. The results obtained in the experiments are not

comprehensive, but the degree of success achieved in pre-
dicting agent behavior and market outcomes can be used
as a benchmark for judging the effectiveness of the pro-
posed mechanisms.

5.1 Results in High-risk Market

Table 1: Payoff matrix with deferred allocation policy in
high-risk marketTable 1: Payoff matrix in the high-risk market

Seller\Buyer MONO TT ZIA

87%, 44.1, 5,887.3 87%, 55.1, 5,887.3 87%, 27.9, 5,913.3
MOD 11,449.4

(233.2)
-5,562.1
(159.3)

9,547.8
(193.8)

-3,660.5
(192.7)

14,273.7
(315.4)

-8,360.4
(121.2)

26%, 57.5, -6,782.8 32%, 61.4, -5,401.0 6%, 58.0, -11,646.7
TT 1,282.2

(251.3)
-10,251.9
(189.1)

3,900.9
(147.5)

-9,301.9
(176.1)

-3,509.0
(928.3)

-12,487.6
(173.6)

95%, 53.5, 7,897.2 95%, 55.1, 7,695.4 96%, 41.7, 8,097.3
TTMOD

-726.7
(1,035.8)

-2,950.7
(142.9)

2,160.3
(1,077.4)

-2,751.5
(154.8)

-7,937.5
(1,942.5)

-5,107.8
(149.6)

91%, 49.8, 6,975.9 90%, 55.8, 6,897.1 90%, 42.5, 6,672.8
MONO

256.3
(851.9)

-4,188.8
(144.8)

4,218.8
(600.9)

-3,150.3
(140.3)

-14,593.5
(1,454.2)

-5,605.3
(168.3)

60%, 55.2, 599.0 61%, 57.9, 990.6 40%, 46.1, -4,093.7
ZIA -21,883.6

(1,773.0)
-6,566.0
(278.7)

-12,219.5
(1,823.8)

-6,108.6
(361.8)

-30,769.5
(3,245.9)

-9,514.9
(378.3)

1

Table 2: Payoff matrix with standard allocation policy in
high-risk marketTable 1: Payoff matrix in the high-risk market

Seller\Buyer MONO TT ZIA

97%, 44.0, 8,207.2 97%, 55.0, 8,207.2 97%, 27.8, 8,170.5
MOD 12,833.6

(144.9)
-4,626.4
(102.3)

10,694.7
(120.7)

-2,487.5
(123.5)

15,952.3
(186.6)

-7,781.8
(81.7)

34%, 56.5, -4,650.5 36%, 61.2, -4,347.0 21%, 57.0, -7972.8
TT

981.7
(241.6)

-9,328.3
(143.7)

4,425.7
(140.3)

-8,772.7
(136.2)

-11,435.0
(1,075.2)

-10,837.5
(185.0)

92%, 47.9, 7,297.5 91%, 55.9, 7,062.7 94%, 34.3, 7,628.4
TTMOD -3,054.8

(1,107.0)
-4,381.0
(130.5)

-194.6
(1,001.3)

-3,066.8
(154.4)

-23,547.0
(2,232.8)

-6,771.7
(113.0)

92%, 46.9, 7,359.0 92%, 55.7, 7,353.7 93%, 38.4, 7,554.6
MONO 3,943.9

(805.6)
-4,546.8
(139.9)

6,840.7
(491.4)

-2,923.0
(148.6)

-11,778.4
(1,456.5)

-6,030.4
(118.1)

85%, 50.4, 5,940.1 85%, 56.4, 5,970.7 80%, 42.6, 4,896.4
ZIA -25,758.3

(1,951.6)
-4,643.7
(178.5)

-13,163.5
(1,487.8)

-3,622.3
(192.0)

-59,309.5
(2,562.8)

-6,381.9
(120.1)

1

Table 1 shows the payoff matrix between sellers and
buyers in the high-risk market with the deferred alloca-
tion policy. Each cell in the table represents the result of
interaction between the sellers and buyers with the corre-
sponding strategy. The cell is separated into two parts: the
upper part of the cell shows the average matching rate, the
average clearing price and the average social utility (in-
cluding penalties paid by buyers to the auctioneer), and
the bottom left corner in the lower part of the cell reveals
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the average and standard deviation (inside parentheses) of
the utility of seller agents and the top right corner shows
those of utility of buyer agents. In the table, numbers in
boldface represent utilities of the agent’s best response to
the other agent’s bidding strategy.

The table shows that TTMOD strategy is a dominant
strategy for seller agents and TT strategy is almost always
a best response for buyer agents, and (TTMOD, TT) strat-
egy profile is a Nash equilibrium in the market. Thus, the
deferred allocation policy succeeds in leading sellers and
buyers to behave reasonably and truthfully in the high-
risk market of perishable goods. To be noticed is that the
Nash equilibrium does not maximize the social utility in
the market but it produces fair distribution of large utility
(i.e., 7,695.4) among different types of agents. Thus, the
deferred allocation policy succeeds in leading sellers and
buyers to behave reasonably and truthfully in the high-risk
market.

Table 2 shows the payoff matrix with the standard al-
location policy, which is used in currently operating mar-
kets. The table shows that there is no Nash equilibrium
in the market. As is the case in current markets, if sellers
are not allowed to bid their valuation (i.e., bidding with
MOD strategy), a larger social utility (i.e., 8,170.5) can
be achieved in the market at the sacrifice of sellers’ larger
loss (i.e., −7,781.8).

5.2 Results in Low-risk Market
Table 3 shows the payoff matrix between sellers and

buyers in the low-risk market with the deferred allocation
policy. The table shows similar results to those in the high-
risk market. TTMOD strategy is a dominant strategy for
seller agents and TT strategy is almost always a best re-
sponse for buyer agents, and (TTMOD, TT) strategy pro-
file is a Nash equilibrium. The deferred allocation policy
succeeds in leading sellers and buyers to behave reason-
ably and truthfully also in the low-risk market of perish-
able goods.

Table 4 shows the payoff matrix with the standard al-
location policy. The table shows that there is no Nash
equilibrium in the market and, when sellers do not bid
their valuation, they suffer a big loss (i.e, −4,576) even
in the low-risk market, where demands have higher valu-
ation than supplies. We think this type of market is not
inherently sustainable since suppliers to the market have
difficulty in making proper profits.

5.3 Effects of Deferred Allocation
When the deferring condition 1 prioritizes asks of

produced goods, matching prices with sellers’ MONO,
TTMOD or ZIA strategy go up because, with those strate-
gies, sellers bid high valuation before the goods are pro-
duced. In addition, the deferring condition 1 lowers
matching rates when sellers use MONO or ZIA strategies
because with those strategies, sellers overbid aggressively
in the early time rounds of their asks.

When sellers adopt MOD strategy, asks are matched
based on FIFS ordering since all the asks have the same
valuation 0. Therefore, the deferring condition 2 lowers

Table 3: Payoff matrix with deferred allocation policy in
low-risk market

Table 1: Payoff matrix in the low-risk market

Seller\Buyer MONO TT ZIA

87%, 52.9, 11,907.8 87%, 66.1, 11,907.8 87%, 33.1, 11,936.3
MOD 13,739.4

(279.9)
-1,831.7
(181.8)

11,457.3
(232.5)

450.5
(225.4)

17,190.8
(379.8)

-5,254.5
(128.8)

77%, 58.3, 10,231.2 83%, 67.5, 11,523.2 50%, 54.2, 3,232.2
TT 10,926.9

(308.1)
-2,004.5
(280.0)

11,267.5
(234.9)

255.7
(247.3)

-3,653.2
(930.3)

-5,599.1
(260.2)

91%, 57.5, 13,254.6 91%, 66.5, 13,058.1 93%, 48.7, 13,581.2
TTMOD 9,929.3

(527.9)
-535.1
(192.9)

11,209.1
(315.1)

1,024.2
(221.3)

-180.9
(1,195.5)

-1,956.7
(157.5)

90%, 55.8, 12,956.9 89%, 66.5, 12,517.8 90%, 44.6, 12,907.0
MONO 11,656.8

(356.8)
-1,001.2
(158.0)

11,248.6
(213.3)

751.0
(200.2)

2,158.3
(1,121.8)

-3,014.6
(161.6)

82%, 60.5, 11,316.5 85%, 67.7, 11,916.8 68%, 52.6, 7,469.3
ZIA -3,252.9

(1,118.4)
-1,057.7
(238.4)

-3,510.0
(791.7)

457.1
(244.5)

-23,024.2
(2,016.9)

-3,905.7
(325.9)

1

Table 4: Payoff matrix with standard allocation policy in
low-risk market

Table 1: Payoff matrix in the low-risk market

Seller\Buyer MONO TT ZIA

97%, 52.8, 14,682.1 97%, 66.0, 14,682.1 97%, 33.0, 14,636.1
MOD 15,400.4

(173.9)
-718.2
(115.4)

12,833.6
(144.9)

1,848.5
(140.8)

19,212.6
(224.6)

-4,576.5
(84.5)

76%, 57.4, 9,984.0 81%, 67.9, 11,087.7 64%, 53.2, 6,933.5
TT 9,882.9

(290.0)
-2,285.1
(148.9)

11,048.8
(198.1)

39.0
(192.3)

-8,084.3
(1,038.8)

-4,249.9
(203.1)

92%, 55.3, 13,532.2 91%, 66.7, 13,198.2 94%, 41.0, 14,065.4
TTMOD 9,782.3

(606.5)
-851.1
(156.4)

11,003.9
(313.3)

1,099.2
(187.2)

-666.7
(1,352.5)

-3,282.5
(147.7)

95%, 53.9, 14,284.8 96%, 66.2, 14,406.7 95%, 40.3, 14,190.7
MONO 13,465.4

(343.2)
-739.9
(139.8)

12,400.8
(208.3)

1,704.8
(154.2)

6,109.9
(1,045.1)

-3,359.6
(132.3)

92%, 56.7, 13,464.8 91%, 67.0, 13,367.5 90%, 46.6, 13,023.7
ZIA

149.6
(1,021.7)

-649.3
(166.0)

5,886.3
(993.1)

1,187.0
(183.6)

-26,917.5
(1,766.1)

-2,639.3
(167.0)

1

matching rates of sellers with MOD strategy because it
results in prioritizing the asks with more slack time over
those with a close departure time. With combined ef-
fects of the deferred allocation policy, TTMOD strategy
becomes sellers’ dominant strategy in the market over the
other bidding strategies.

Simulation results obtained in the two types of markets
suggest that the current practice of the perishable goods
market, which is a one-sided auction such as Dutch auction
with the standard allocation policy, causes unfair trades for
sellers. The simulation results also show that traders can
stably achieve fair and approximately efficient allocation
of perishable goods without strategic bidding in the online
DA market with the deferred allocation policy.
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6 CONCLUSIONS

We developed an online DA mechanism for the market
of perishable goods to improve the profitability of traders
by considering the loss from trade failures. We explained
that sellers have a high risk of losing money by trade fail-
ures because their goods are perishable. To reduce trade
failures in the perishable goods market, our DA mech-
anism prioritizes the bids that have a smaller chance of
being matched in their time period by deferring match-
ing the bids that have more chances. Experimental results
using multi-agent simulation showed that our DA mecha-
nism was effective in promoting truthful behavior on the
part of traders for realizing fair distribution of large utili-
ties between sellers and buyers. It suggests that a hybrid
market of forward and spot trades running our online DA
mechanism is a promising platform for marketplaces of
perishable goods.

The experiment results reported in this paper are very
limited for any comprehensive conclusion on the design
of online DA for perishable goods. We need to investigate
other types of bidding practices and test them in a wider
variety of experimental settings. Additionally, behavior of
human subjects in the market must be examined carefully
to evaluate the designed mechanism 5).

Fig. 4: E-marketplace for oysters in Miyagi prefecture
(http://www.miyagi-oyster.jp/)

In developing countries, there are strong demands for
improving efficiency in argicultural markets 9) and it is
also true for rural societies in developed countries incldu-
ing Japan. As an application of our online DA mecha-
nism, we developed an e-marketplace for trading fishery
products as shown in Fig. 4. Figure 5 shows actual trad-
ing results in the e-marketplace from December, 2014 to
the beginning of January, 2015. Only local traders used to
participate in the fishery markets because the highly per-
ishable nature of the fishery products prevents their trade

Fig. 5: Trading results in e-marketplace

from being open to wider participants. This leads to low
incomes for the fishermen and collapse of the local fish-
ery industries. We hope our online DA mechanism will
contribute in promoting the successful deployment of elec-
tronic markets for fisheries and improve welfare of local
fishermen by attracting more traders from remote areas.
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