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Abstract Resource allocation optimization and dynamic scheduling under emergent situations have been
extensively yet separately studied in various fields. However, to our best knowledge, few of the extant
works in these research realms provided a holistic framework to capture the allocation optimization and
in-location scheduling as a series of actions from the starting place to the final destination, considering a
set of constraints, such as ability-matching of divergent resources, time-distance limitations and resource
scarcity. Therefore, we propose a holistic framework to integrate the resource allocation optimization and
dynamic scheduling, considering the ability and capacity of different resources as well as the distance among
locations in a time-efficient and supply-need matching manner. In addition, we construct an agent-based
model to realize the framework by applying real-coded genetic algorithm and dynamic scheduling of multi-
functional resource assignment to solve the following research problems as a holistic system: how many
resources should be assigned to which location with the ability-matching property, and based on which how
the limited in-location resources are scheduled.
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1 Introduction
In literature, resource allocation optimization and

dynamic scheduling under emergent situations have
been extensively yet separately studied in various
fields such as operational research and disaster man-
agement 7, 3, 12, 6, 11, 10). However, in some real life
situations, those two aspects are closely related with
each other and may require a holistic support to en-
able a more efficient and effective planning. To our
best knowledge, few of the extant works provided
a holistic framework to capture the resource allo-
cation optimization and in-location scheduling as a
series of actions from the starting place to the fi-
nal destination, considering a set of constraints as
ability-matching, time-distance limitations and re-
source scarcity. Therefore, we propose a general
framework to integrate the resource allocation opti-
mization and scheduling, considering the ability and
capacity of different facilities as well as the distance in
a time-efficient and ability-matching manner, and for-
mulate this problem as a constraint satisfaction prob-
lem.

On the other side, in order to optimize resource
allocation and scheduling, evolutionary algorithms,
such as genetic algorithm 20) and simulated anneal-
ing 19), as well as various scheduling techniques have
been extensively applied 15, 18). In this work, in or-
der to catch the heterogeneity of resources and to
cope with the dynamic and complex process, we ap-
ply an agent-based approach by which integrating
Ono’s real-coded genetic algorithm 13) and Deguchi’s
dynamic scheduling of multi-functional resource as-
signment 5) to solve the following research problems:
how many resources should be assigned to which lo-
cation with ability-matching property, and how does
the resource scheduling proceed within each location.
We integrate these two research questions as one sin-
gle problem such that the changing availability of re-
sources due to the scheduling would further influence
the resource allocation optimization subsequently.

This general framework indicates various potential
applications. Taking disaster management as an ex-
ample, this general framework could be applied to dis-
patch injured patients with different symptoms during
a disaster to the corresponding hospital in which they

could by cured while minimizing the transportation
time, and subsequently based on which to schedule
the transportation facilities as well as the in-hospital
activities based on the capacity of resources, such as
doctors, nurses and beds. Another example could be
allocating the required post-disaster resources, such
as food, water, and tent, to multiple temperate re-
lief spots to minimize the gap between needs and the
actual allocation.

This work is organized as follows. We model the
research problem as a constraint satisfaction problem
in Section 2 and propose an agent-based framework
combining real-coded genetic algorithm and dynamic
scheduling to solve the problems in Section 3. Some
preliminary evaluation results of the framework are
discussed subsequently and a conclusion with some
future work will be discussed in Section 4.

2 Problem formulation
The general framework is composed by two major

stages. The first stage considers how many resources
should be dispatched to which location under a set
of constraints to minimize a set of criteria, such as
time cost and the difference between the actual al-
location and resource capacity, as a constraint sat-
isfaction problem and the following second stage is
formulated as a scheduling problem considering the
dynamic scheduling over time based on pre-defined ac-
tivity paths and available resources. These two stages
will be carried out subsequently in an iterative man-
ner. We assume that all necessary information, such
as the location of facilities, number of available re-
sources and estimated needs, have been collected and
ready to use in advance.

The detailed framework is shown in Fig. 1.

2.1 Model formulation

In this sub-section, we give a formal definition of the
proposed agent-based framework. Basically we define
two types of agent: agent with certain resource/ability
and agent with certain need. In addition, we require
that each agent must be at one location at one time
unit. The movement of agents among locations is
two-way, which means the agent with resource could
move towards the agent with need as satisfying the
need, whilst the agent with need could move towards
the agent with resource as well. Taking the examples
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Fig. 1: A two-stage process

of disaster management again, moving emergency re-
sources to relief spots is moving agents with resources
to agents with needs, whilst moving patients to cor-
responding hospitals is moving agents with needs to
agents with resources. The formal model definition is
provided in the following subsections.

2.1.1 Agent and Spot

Location. We define a set of locations as L =
{l1, l2, . . . , lm}, of which each location li ∈ L is de-
fined by (Xi, Yi) as the coordinate, i.e. latitude and
longitude respectively. This location could be hospi-
tal, disaster occurred spot, and relief base, etc.

Agent with ability. We define a set of agents with
certain resource as P = {p1, p2, . . . , pn}, of which
each agent possesses one ability to perform corre-
sponding tasks or satisfying certain needs, such as
doctors, rescue teams, required material resources,
etc.. Each pi ∈ P is defined by its functional abil-
ity abilityi ∈ Ability = {a1, a2, . . . , ak}, k ∈ N .

Agent with need. We also define a set of
agents with certain need as Q = {q1, q2, . . . , qn}, of
which each qi possesses a need needi ∈ Need =
{ne1, ne2, . . . , nek}, k ∈ N . This need could be re-
source or personnel, such as injured people needs doc-
tors (agents with ability).

2.1.2 Agent at Spot

Each agent pj ∈ P stays at one location li ∈ L at
each time unit, which makes this location possess a
set of abilities as Abilityi ⊆ Ability, indicating that
the ability of location li includes the abilities of all
agents currently staying at this location, and the ca-
pacity of each available ability at this location is de-

fined as Capacitysupplyi = {c1, c2, . . . , ck | cs ∈ N},
cs ∈ Capacitysupplyi is the number of agents with abil-
ity as ∈ Abilityi currently at location li.

Similarly, each agent qj ∈ Q stays at one location
li ∈ L at each time unit as well, which makes this loca-
tion possess a set of needs as Needi ⊆ Need, indicat-
ing that the needs of location li include the needs of all
agents currently at this location. The quantity of ev-
ery need at this location is defined as Capacityneedi =
{c1, c2, . . . , ck | cs ∈ N}, cs ∈ Capacityneedi is the
number of agents with need nes ∈ Needi currently at
location li.

Here we define a bijective mapping function
Mapping : Ability → Need; Mapping(ai) = nei indi-
cating that ai ∈ Ability could, and only could satisfy
one need nei ∈ Need, and vice versa.

2.1.3 Agent moving to Spot
Both agent pi with ability as and agent qi with

need nes possess a variable list Xi = {xsij}, ∀lj , s.t.
nes ∈ Needj or as ∈ Abilityj , as the probability
of going to a set of ability-matching locations, i.e.
as = Mapping−1(nes) and Mapping(as) = nes. This
probability could be interpreted at both micro level
(as the probability of each individual) and macro level
(as the proportion of agents with the same ability cur-
rently at the same location).

2.1.4 Constraint Satisfaction Problem
Depending on the situation, each agent qi ∈ Q with

need nes ∈ Need would choose a location lj as desti-
nation where as ∈ Abilityj , as = Mapping−1(nes), or
each agent pi with ability as ∈ Ability would choose a
location lj where nes ∈ Needj , nes = Mapping(as).
The CSP is thus defined as follows.

1. Given a finite set of variables X = {Xi}, i ∈
{1, 2, . . . , n}

2. A discrete and finite domain set
D = {D1, D2, . . . , Dn} is defined as
Di = {PROB(l1), . . . , PROB(lj)}, ∀lj ∈ L,
where PROB : L → [0, 1] is a probability
function indicating the probability of choosing a
location.

3. A constraint set C = {Ci(Xi)}, where Ci(Xi) =
{lj},∀lj ∈ L s.t. as ∈ Abilityj ; |Ci(Xi)| as the
number of possible locations for this agent, and∑
∀lt∈Ci(Xi)

PROB(lt) = 1.

The set of possible solutions is then defined as the
Cartesian product of the sets of domains.

2.2 Real-coded Genetic Algorithm

We apply Ono’s real-coded genetic algorithm 13)

to solve this constraint satisfaction problem as the
first stage of the framework, aiming to minimize the
time cost and the difference between expected and
actual allocation while satisfying a set of ability-
matching constraints. This genetic algorithm has a
real number vector representation, and proposes a
new crossover operation, namely unimodal normal
distribution crossover (UNDX) that enables a more
efficient optimization of the fitness function consider-
ing epistasis among parameters. In addition, it fol-
lows the minimal generation gap model (MGG) 17)

for the population generation. The genetic algorithm
representation is formulated as follows,

Chromosomal representation. The length of the
chromosome is the total number of possible locations
moving all types of agents. For example, if there are
agents with 3 types of ability or need at one location
going to be dispatched, and the possible location set
for each type of agent is {l2, l3, l5, l7, l6}, {l2, l4}, and
{l1, l9, l4}, respectively, then the length of the chro-
mosome will be 10. If the agents are currently stayed
in 2 locations, then the length will be 20. Each unit
of the chromosome xsij = PROB(lj) represents the
probability of assigning this agent to the destination
lj satisfying the constraint Ci(Xi), ranging between
0 and 1. By making this chromosomal representa-
tion, the hard constraint of ability-matching is satis-
fied naturally.

Fitness function. The objective is to minimize the
total time cost and the difference between excepted
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and actual allocation. The fitness function F (X) is
defined as follows,

(1)

F (X) = min(w1 ∗
∑
i

∑
j

xsij ∗Distancehj + w2

∗
∑
i

∑
s

|(csj − xsij ∗Ns)|)

xsij is agent qi’s (or pi’s) probability of going to po-
sition lj . Distancehj is the actual shortest distance
between location lj (destination) and lh (current lo-
cation of agent). It could be calculated by the Di-
jkstra’s algorithm and implemented by osm2po (an
open source java package, ver. 5.0) 1). csj is the ca-
pacity of ability as at location lj , Ns is the total num-
ber of agents with need nes. w1 and w2 are weights
to adjust the proportion of two objectives, whose val-
ues will be generated randomly following Murata et
al. 16).

∑
i

∑
j x

s
ij ∗Distancehj (as indicator 2) and∑

i

∑
s|(csj−xsij ∗Ns)| (as indicator 1) are normalized

as v′i = (vi − vmin)/(vmax − vmin) before the calcula-
tion.

Constraints. There are two constraints. One is the
hard ability-matching constraint, and the other one is
to make sure every agent is allocated to one and only
one location. The formulations are as follows,

as ∈ Abilityj (2)∑
j

xsij = 1, for ∀as ∈ Ability (3)

as is the ability of agent pi and Abilityj is the to-
be-distributed location lj ’s ability set. The way to

guarantee the second constraint is to set xsij =
xsij∑
j x

s
ij

for any lj such that as ∈ Abilityj .
By designing the chromosome in this way, the length

of each individual only depends on the multiplication
of the number of ability types and possible locations,
not the number of agents with different abilities. In
the case of allocating large number of agents, the com-
putation complexity of this real-coded GA design will
outperform those of which the individual length de-
pends on the number of agents, with equal number of
population and similar mutation/crossover operators.

2.3 Dynamic Scheduling
The above real-coded genetic algorithm is applied to

decide which location to go in order to minimize the
time cost and the difference between expected and ac-
tual allocation, based on the results of which we apply
a revised version of Deguchi’s dynamic scheduling of
multi-functional resource assignment 5) for the actual
movement and inner-location resource scheduling as
a series of activities, with limited resources in terms
of transportation facilities and in-location resources.
This algorithm provides a simple yet efficient resource
scheduling especially for handling parallel tasks with
multi-function resources naturally. In addition, it al-
lows any change of the capacity of available resources
during any time and reflects the resulted schedules in
time, which is very critical for handling the changing
situations. The resulted changes of the capacity of
available resources or needs will be updated accord-
ingly and applied to the first stage in the following
cycle.

We treat each agent as a project, and the move-
ment and in-location resource scheduling as a series
of tasks. The corresponding formal definition follow-
ing Deguchi 5) is given in below.

Task Set. PS = {q1, q2, . . . , qn} is a set of unit
projects. Here one agent qi ∈ Q is represented as
one project. It could be {p1, . . . , pn}, pi ∈ P as well
and all the following definitions apply since the move-
ment is two-way. Without losing generality, we only
use qi in the following definitions. TASKS[q1] =
TASKS[q2] = · · · = TASKS[qn] = {Mij , Hij} is
the task set for each project, Mij indicates the ac-
tual movement from departure spot li ∈ L to destina-
tion lj ∈ L, and Hij is the in-location scheduling of
resources with ability ai ∈ Abilityj at location lj ∈ L.

Professional Set. PROFS = {profij , transport1
, transport2, staffj , facilityj} is a set of professions.
profij indicates the agents pi ∈ P with ability ai ∈
Abilityj at location lj ; transport1 and transpot2 rep-
resent transportation facilities, such as ambulance
and helicopter; staffj represents auxiliaries at loca-
tion lj ; facilityj represents location lj facilities, such
as available beds in the disaster management applica-
tion.

Task Profession Relation. The relation among
Task, Profession, and the available resources is illus-
trated in the following Fig. 2,

Fig. 2: Task Profession Relationship

Profession assignment function. For each
profession, there is a set of available resources
defined by this function, ProfAssignF (wt1) =
transport1;ProfAssignF (wt2) = transport2;
ProfAssignF (waij) = profij , waij ∈ P with
ai ∈ Abilityj at location lj ; ProfAssignF (wsj)
= staffj ; ProfAssignF (wfj) = facilityj . The
resources could be either personnel or mere facilities.

Possible task set for w. POSTASKS[w] is
defined as the possible tasks which could be per-
formed by each resource. POSTASKS[wt1] =
POSTASKS[wt2] = {Mij}; POSTASKS[waij ] =
POSTASKS[wsj ] = POSTASKS[wfj ] = {Hij}.
Estimated Time for Tasks. EstT imeAccompF is
the function to assign required time unit for complet-
ing each task. EstT imeAccompF (Hij) will be deter-
mined by assumption and EstT imeAccompF (Mij) is
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Table 1: Agents with abilities

Location Coordination Abilities Capacity
l1 35.899444; 139.623056 a,b,c,d,e 10,5,5,7,3
l2 35.890930; 139.679232 c,d 5,10
l3 35.809444; 139.703056 a,c,e 5,10,9
l4 35.84325; 139.730556 a,e 8,11

Table 2: Agents with needs

Location Coordination Needs Number
l5 35.796885; 139.588938 a,b,c,d,e 36,45,78,25,41
l6 35.838330; 139.629960 a,b,c,d,e 24,30,57,21,35
l7 35.880363; 139.768491 a,b,c,d,e 3,5,6,3,4
l8 35.934260; 139.719229 a,b,c,d,e 13,16,30,8,14
l9 35.954601; 139.655366 a,b,c,d,e 2,0,2,1,1

proportional to the real distance between the depar-
ture spot and destination.

Path Definition. The path for each project is de-
fined as pathijk : start→Mij → Hkj → end depend-
ing on the departure location li, destination location
lj which is resolved by the genetic algorithm at the
first stage, and the ability ak ∈ Abilityj .

When assigning resources to unfinished tasks set as
a partial ordering, the tasks that request fewer re-
sources will be given a higher priority and completed
first. In addition, different from 5) in which unfinished
tasks with shorter time period will be given a higher
priority to compete for the resources, in this work
the resources will be assigned randomly to unfinished
tasks which require same amount of resources.

3 Simulation
In this section, we set up a small-scale case to ex-

periment the framework for demonstration purposes.

3.1 Setting of Agents
We assume there are 500 agents at 5 locations with

different needs needi ∈ {a, b, c, d, e}, and 88 agents
at 4 locations with corresponding abilities abilityi ∈
{a, b, c, d, e}. Those agents with needs will be allo-
cated to locations where agents with abilities exist.
The detailed information is listed in Table 1 and Ta-
ble 2. In addition, the distance between locations is
estimated based on the real GIS data via Google Map
2) and listed in Table 3.

3.2 Setting of Real-coded GA and Dynamic
Scheduling

We set the real-coded GA parameters following
Ono’s setting 13): number of crossovers for MGG:
100; population size: 500; α and β for UNDX: 0.5
and 0.35 respectively; number of generations: 2000.
We run the simulation for 10 times, and the result
with the least evaluation value will be passed to the
dynamic scheduling phase.

The simulation setting of the dynamic scheduling
phase is as follows: each agent is treated as a project,
and depending on their original location, destination

Table 3: Distance Information

Distance (km) l1 l2 l4 l4
l5 13 8 18 12
l6 16 22 14 15.5
l7 8 14.5 8.5 11
l8 18 24 5 15
l9 18 11 12 7

Table 4: Dynamic Scheduling Setting

Variable Value
prof11, prof13, prof14 10,5,8

prof21 5
prof31, prof32, prof33 5,5,10

prof41, prof42 7,10
prof51, prof53, prof54 3,9,11

trans1, trans2 50,5
staff1, staff2, staff3, staff4 30,15,24,19

facility1, facility2, facility3, facility4 15,10,20,5

(a) Minimizing indicator 1
only

(b) Minimizing indicator 2
only

(c) Minimizing both indicators (d) Average evaluation value
of 10 runs

Fig. 3: Landscape of the probability of moving agents
to each possible location

and needs, the path pathijk : Mij → Hkj of the
scheduling will be determined accordingly. The value
of other resources is shown in Table 4.

3.3 Simulation result

Fig. 3 (a), (b) and (c) show the landscape results
of the probability of moving agents to each possible
location of all 10 runs, by indicating the maximum,
minimum and average value. x-axis is the 60 possi-
ble allocation cases, and y-axis is the corresponding
probability. Fig. 3 (d) states the average evaluation
value of 10 runs along 2000 evaluation iterations. A
snapshot of the allocation result with the best evalua-
tion value of 10 runs when both indicators are consid-
ered is shown in Table 5. To calculate the number of
agents, we could simply multiple the probability with
the number of agents with each need.

Fig. 4 shows the evaluation value of both indicators
of the best 50 children in the last 1000 evaluation iter-
ations of real-coded GA. For indicator 1, the difference
between expected and actual allocation, x-axis is the
evaluation value composing both indicators; y-axis is
the evaluation value of the difference. For indicator
2, the distance of movement, x-axis is the evaluation
value composing both indicators, whilst y-axis is the
evaluation value of the distance. Fig. 4 (a), (b), (c)
show respectively the situation that only indicator 1,
indicator 2 and both indicators are optimized. The
x-axis and y-axis represent the evaluation value of in-
dicator 1 and 2 respectively in Fig. 4 (d), from which
we could observe that both indicators are minimized.

Regarding the dynamic scheduling, it will derive
three tables from which we could check the assigned
resources and starting time of each project (agent)
(as in Fig. 5 (a) and (c)). In addition, from the per-
spective of resources, we could know their schedule
in terms of assigned project along the process (as in
Fig. 5 (b)). By analyzing the tables, we could identify
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Table 5: Probability of agents moving to the corre-
sponding spot

Location Needs Possible destination Probability

l5

a l1,l3,l4 0.44,0.15,0.42
b l1 1
c l1,l2,l3 0.37,0.35,0.27
d l1,l2 0.58,0.42
e l1,l3,l4 0.40,0.31,0.28

l6

a l1,l3,l4 0.38,0.31,0.32
b l1 1
c l1,l2,l3 0.35,0.37,0.28
d l1,l2 0.63,0.37
e l1,l3,l4 0.43,0.27,0.29

l7

a l1,l3,l4 0.42,0.28,0.3
b l1 1
c l1,l2,l3 0.33,0.3,0.37
d l1,l2 0.59,0.41
e l1,l3,l4 0.32,0.32,0.36

l8

a l1,l3,l4 0.29,0.48,0.24
b l1 1
c l1,l2,l3 0.23,0.27,0.5
d l1,l2 0.15,0.85
e l1,l3,l4 0.33,0.45,0.22

l9

a l1,l3,l4 0.21,0.44,0.35
b l1 1
c l1,l2,l3 0.31,0.34,0.34
d l1,l2 0.49,0.51
e l1,l3,l4 0.26,0.4,0.35

the bottleneck of resource allocation, i.e. the lack of
critical resources, and adjust the initial resource set-
ting accordingly. In addition, we could estimate the
availability of each type of resource at any given time
based on the scheduling tables, and then apply the
estimated availability for any further resource alloca-
tion optimization.

In future work, we could further revise the schedul-
ing algorithm according to different priority settings
of tasks to improve the performance and make it more
flexible to various scenarios. The results could be vi-
sualized to facilitate the policy-making process among
stakeholders.

4 Conclusion
This work proposed a general holistic framework for

integrating ability-matching resource allocation and
scheduling under the time and resource limitations,
and constructed an agent-based model applying real-
coded GA and dynamic scheduling to optimize the
raised problems. In addition, we evaluated the frame-
work by setting up a small scale case, through which
we could have a very straight-forward optimized allo-
cation plan and the scheduling of each resource as a
dynamic process, and trace the results of any change
due to emerging or unexpected situations. This pre-
liminary holistic framework is expected to contribute
significantly to the emergency resource allocation and
scheduling to resolve problems stemmed from real life
applications.

In future work, with any available empirical data,
we could further improve the framework and apply
it to real situations to capture the dynamic process
and emerging situations in real-time. By experiment-
ing more scenarios, the insight and knowledge gained
could facilitate the training of rescue teams and the
policy-making process of multiple involved stakehold-
ers.
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